diff --git a/notebooks/Optimization.ipynb b/notebooks/Optimization.ipynb index 47c5eda538d156f5794e00c9485bab23277fbb10..bb1dc12d2028235b77c42d06977797fb0c4466b3 100644 --- a/notebooks/Optimization.ipynb +++ b/notebooks/Optimization.ipynb @@ -169,23 +169,35 @@ " paper = Paper(paper_id, [reviewer], score)\n", " result.append(paper)\n", "\n", - " return result\n", - "\n", - "papers = load_data('../data/optimization_data.tsv')" + " return result" ] }, { "cell_type": "markdown", - "id": "36d5ab0d", + "id": "b96637c3", "metadata": {}, "source": [ - "## Functions" + "## The Models" + ] + }, + { + "cell_type": "markdown", + "id": "537d7040", + "metadata": {}, + "source": [ + "### Slow approach\n", + "\n", + "<div class=\"alert alert-warning\">\n", + " \n", + "**Warning**: Depending on the slot size and the number of papers, this approach gets very slow very fast. It is recommended to limit the number of papers and `max_slot_size`.\n", + "\n", + "</div>" ] }, { "cell_type": "code", "execution_count": null, - "id": "d737af19", + "id": "ea63212b", "metadata": {}, "outputs": [], "source": [ @@ -232,22 +244,7 @@ { "cell_type": "code", "execution_count": null, - "id": "067ea4ea", - "metadata": {}, - "outputs": [], - "source": [ - "def score_paper(paper) -> int:\n", - " if len(paper.reviewers) > 0:\n", - " review_score = 2 - abs(paper.score)\n", - " return review_score\n", - " else:\n", - " return 0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "23670286", + "id": "05dd3bc9", "metadata": {}, "outputs": [], "source": [ @@ -274,28 +271,6 @@ " return True" ] }, - { - "cell_type": "markdown", - "id": "b96637c3", - "metadata": {}, - "source": [ - "## The Models" - ] - }, - { - "cell_type": "markdown", - "id": "dd6a6099", - "metadata": {}, - "source": [ - "### Slow approach\n", - "\n", - "<div class=\"alert alert-warning\">\n", - " \n", - "**Warning**: Depending on the slot size and the number of papers, this approach gets very slow very fast. It is recommended to limit the number of papers and `max_slot_size`.\n", - "\n", - "</div>" - ] - }, { "cell_type": "code", "execution_count": null, @@ -303,12 +278,13 @@ "metadata": {}, "outputs": [], "source": [ - "max_time_slots = 3\n", - "max_slot_size = 5\n", - "\n", + "papers = load_data('../data/optimization_data.tsv')\n", "# use the first 15 papers\n", "papers = papers[:15]\n", "\n", + "max_time_slots = 3\n", + "max_slot_size = 5\n", + "\n", "all_time_slots = [c for c in pulp.allcombinations(papers, max_slot_size)]\n", "possible_time_slots = []\n", "\n", @@ -363,7 +339,7 @@ }, { "cell_type": "markdown", - "id": "0918db10", + "id": "7d5e9686", "metadata": {}, "source": [ "### Fast approach\n", @@ -378,10 +354,27 @@ { "cell_type": "code", "execution_count": null, - "id": "501af564", + "id": "9a065c01", + "metadata": {}, + "outputs": [], + "source": [ + "def score_paper(paper) -> int:\n", + " if len(paper.reviewers) > 0:\n", + " review_score = 2 - abs(paper.score)\n", + " return review_score\n", + " else:\n", + " return 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fea427b4", "metadata": {}, "outputs": [], "source": [ + "papers = load_data('../data/optimization_data.tsv')\n", + "\n", "max_time_slots = 3\n", "max_slot_size = 50\n", "\n",