Newer
Older
from __future__ import absolute_import
import six, sys, os, gc, re, collections, site, inspect, time, traceback, copy
import bisect
from osgeo import gdal, ogr
from qgis import *
from qgis.core import *
from qgis.gui import *
from PyQt4.QtGui import *
from PyQt4.QtCore import *
from PyQt4.QtXml import *
from timeseriesviewer import DIR_REPO, DIR_EXAMPLES, dprint, jp
def transformGeometry(geom, crsSrc, crsDst, trans=None):
if trans is None:
assert isinstance(crsSrc, QgsCoordinateReferenceSystem)
assert isinstance(crsDst, QgsCoordinateReferenceSystem)
return transformGeometry(geom, None, None, trans=QgsCoordinateTransform(crsSrc, crsDst))
else:
assert isinstance(trans, QgsCoordinateTransform)
return trans.transform(geom)
METRIC_EXPONENTS = {
"nm":-9,"um": -6, "mm":-3, "cm":-2, "dm":-1, "m": 0,"hm":2, "km":3
}
#add synonyms
METRIC_EXPONENTS['nanometers'] = METRIC_EXPONENTS['nm']
METRIC_EXPONENTS['micrometers'] = METRIC_EXPONENTS['um']
METRIC_EXPONENTS['millimeters'] = METRIC_EXPONENTS['mm']
METRIC_EXPONENTS['centimeters'] = METRIC_EXPONENTS['cm']
METRIC_EXPONENTS['decimeters'] = METRIC_EXPONENTS['dm']
METRIC_EXPONENTS['meters'] = METRIC_EXPONENTS['m']
METRIC_EXPONENTS['hectometers'] = METRIC_EXPONENTS['hm']
METRIC_EXPONENTS['kilometers'] = METRIC_EXPONENTS['km']
def convertMetricUnit(value, u1, u2):
assert u1 in METRIC_EXPONENTS.keys()
assert u2 in METRIC_EXPONENTS.keys()
e1 = METRIC_EXPONENTS[u1]
e2 = METRIC_EXPONENTS[u2]
return value * 10**(e1-e2)
class SensorInstrument(QObject):
INSTRUMENTS = dict()
INSTRUMENTS = {(6, 30., 30.): 'Landsat Legacy' \
, (7, 30., 30.): 'L8 OLI' \
, (4, 10., 10.): 'S2 MSI 10m' \
, (6, 20., 20.): 'S2 MSI 20m' \
, (3, 30., 30.): 'S2 MSI 60m' \
, (3, 30., 30.): 'S2 MSI 60m' \
, (5, 5., 5.): 'RE 5m' \
}
LUT_Wavelenghts = dict({'B':480,
'G':570,
'R':660,
'nIR':850,
'swIR':1650,
'swIR1':1650,
'swIR2':2150
})
def __init__(self, refLyr, sensor_name=None):
super(SensorInstrument, self).__init__()
assert isinstance(refLyr, QgsRasterLayer)
#QgsMapLayerRegistry.instance().addMapLayer(refLyr)
self.nb = refLyr.bandCount()
self.bandDataType = refLyr.dataProvider().dataType(1)
self.refUri = refLyr.dataProvider().dataSourceUri()
r = refLyr.renderer()
self.defaultRGB = [r.redBand(), r.greenBand(), r.blueBand()]
s = ""
"""
dom = QDomDocument()
root = dom.createElement('root')
refLyr.renderer().writeXML(dom, root)
dom.appendChild(root)
self.renderXML = dom.toString()
"""
#todo: better band names
self.bandNames = [refLyr.bandName(i) for i in range(1, self.nb + 1)]
#self.refLyr = refLyr
px_size_x = refLyr.rasterUnitsPerPixelX()
px_size_y = refLyr.rasterUnitsPerPixelY()
self.px_size_x = float(abs(px_size_x))
self.px_size_y = float(abs(px_size_y))
assert self.px_size_x > 0
assert self.px_size_y > 0
#find wavelength
wl, wlu = parseWavelength(refLyr)
self.wavelengths = np.asarray(wl)
self.wavelengthUnits = wlu
if sensor_name is None:
id = (self.nb, self.px_size_x, self.px_size_y)
sensor_name = SensorInstrument.INSTRUMENTS.get(
id,
'{}band@{}m'.format(self.nb, self.px_size_x))
self.sensorName = sensor_name
self.hashvalue = hash(','.join(self.bandNames))
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def bandClosestToWavelength(self, wl, wl_unit='nm'):
"""
Returns the band number (>=1) of the band closest to wavelength wl
:param wl:
:param wl_unit:
:return:
"""
if not self.wavelengthsDefined():
return None
if wl in SensorInstrument.LUT_Wavelenghts.keys():
wl_unit = 'nm'
wl = SensorInstrument.LUT_Wavelenghts[wl]
wl = float(wl)
if self.wavelengthUnits != wl_unit:
wl = convertMetricUnit(wl, wl_unit, self.wavelengthUnits)
return np.argmin(np.abs(self.wavelengths - wl))+1
def wavelengthsDefined(self):
return self.wavelengths is not None and \
self.wavelengthUnits is not None
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
def __eq__(self, other):
return self.nb == other.nb and \
self.px_size_x == other.px_size_x and \
self.px_size_y == other.px_size_y
def __hash__(self):
return self.hashvalue
def __repr__(self):
return self.sensorName
def getDescription(self):
info = []
info.append(self.sensorName)
info.append('{} Bands'.format(self.nb))
info.append('Band\tName\tWavelength')
for b in range(self.nb):
if self.wavelengths:
wl = str(self.wavelengths[b])
else:
wl = 'unknown'
info.append('{}\t{}\t{}'.format(b + 1, self.bandNames[b], wl))
return '\n'.join(info)
class TSDLoaderSignals(QObject):
sigRasterLayerLoaded = pyqtSignal(QgsRasterLayer)
sigFinished = pyqtSignal()
class TSDLoader(QRunnable):
"""
Runnable to load QgsRasterLayers from a parallel thread
"""
def __init__(self, tsd_paths):
super(TSDLoader, self).__init__()
self.signals = TSDLoaderSignals()
self.paths = list()
for p in tsd_paths:
if not (isinstance(p, tuple) or isinstance(p, list)):
p = [p]
self.paths.append(p)
def run(self):
lyrs = []
for path in self.paths:
TSD = TimeSeriesDatum(path)
lyr = QgsRasterLayer(path)
if lyr:
lyrs.append(lyr)
self.signals.sigRasterLayerLoaded.emit(lyr)
dprint('{} loaded'.format(path))
else:
dprint('Failed to load {}'.format(path))
self.signals.sigFinished.emit()
#return lyrs
class TimeSeriesDatum(QObject):
"""
Collects all data sets related to one sensor
"""
def __init__(self, pathImg, pathMsk=None):
super(TimeSeriesDatum,self).__init__()
self.pathImg = pathImg
self.pathMsk = None
self.lyrImg = QgsRasterLayer(pathImg, os.path.basename(pathImg), False)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
self.uriImg = self.lyrImg.dataProvider().dataSourceUri()
self.crs = self.lyrImg.dataProvider().crs()
self.sensor = SensorInstrument(self.lyrImg)
self.date = getImageDate2(self.lyrImg)
assert self.date is not None, 'Unable to find acquisition date of {}'.format(pathImg)
self.ns = self.lyrImg.width()
self.nl = self.lyrImg.height()
self.nb = self.lyrImg.bandCount()
self.srs_wkt = str(self.crs.toWkt())
if pathMsk:
self.setMask(pathMsk)
def getdtype(self):
return gdal_array.GDALTypeCodeToNumericTypeCode(self.etype)
def getDate(self):
return np.datetime64(self.date)
def getSpatialReference(self):
return self.crs
def spatialExtent(self):
from timeseriesviewer.main import SpatialExtent
extent = SpatialExtent(self.lyrImg.crs(), self.lyrImg.extent())
return extent
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
def setMask(self, pathMsk, raise_errors=True, mask_value=0, exclude_mask_value=True):
dsMsk = gdal.Open(pathMsk)
mskDate = getImageDate(dsMsk)
errors = list()
if mskDate and mskDate != self.getDate():
errors.append('Mask date differs from image date')
if self.ns != dsMsk.RasterXSize or self.nl != dsMsk.RasterYSize:
errors.append('Spatial size differs')
if dsMsk.RasterCount != 1:
errors.append('Mask has > 1 bands')
projImg = self.getSpatialReference()
projMsk = osr.SpatialReference()
projMsk.ImportFromWkt(dsMsk.GetProjection())
if not projImg.IsSame(projMsk):
errors.append('Spatial Reference differs from image')
if self.gt != list(dsMsk.GetGeoTransform()):
errors.append('Geotransformation differs from image')
if len(errors) > 0:
errors.insert(0, 'pathImg:{} \npathMsk:{}'.format(self.pathImg, pathMsk))
errors = '\n'.join(errors)
if raise_errors:
raise Exception(errors)
else:
six.print_(errors, file=sys.stderr)
return False
else:
self.pathMsk = pathMsk
self.mask_value = mask_value
self.exclude_mask_value = exclude_mask_value
return True
def readSpatialChip(self, geometry, srs=None, bands=[4,5,3]):
srs_img = osr.SpatialReference()
srs_img.ImportFromWkt(self.srs_wkt)
if type(geometry) is ogr.Geometry:
g_bb = geometry
srs_bb = g_bb.GetSpatialReference()
else:
assert srs is not None and type(srs) in [str, osr.SpatialReference]
if type(srs) is str:
srs_bb = osr.SpatialReference()
srs_bb.ImportFromWkt(srs)
else:
srs_bb = srs.Clone()
g_bb = ogr.CreateGeometryFromWkt(geometry, srs_bb)
assert srs_bb is not None and g_bb is not None
assert g_bb.GetGeometryName() == 'POLYGON'
if not srs_img.IsSame(srs_bb):
g_bb = g_bb.Clone()
g_bb.TransformTo(srs_img)
cx0,cx1,cy0,cy1 = g_bb.GetEnvelope()
ul_px = coordinate2px(self.gt, min([cx0, cx1]), max([cy0, cy1]))
lr_px = coordinate2px(self.gt, max([cx0, cx1]), min([cy0, cy1]))
lr_px = [c+1 for c in lr_px] #+1
return self.readImageChip([ul_px[0], lr_px[0]], [ul_px[1], lr_px[1]], bands=bands)
def readImageChip(self, px_x, px_y, bands=[4,5,3]):
ds = gdal.Open(self.pathImg, gdal.GA_ReadOnly)
assert len(px_x) == 2 and px_x[0] <= px_x[1]
assert len(px_y) == 2 and px_y[0] <= px_y[1]
ns = px_x[1]-px_x[0]+1
nl = px_y[1]-px_y[0]+1
assert ns >= 0
assert nl >= 0
src_ns = ds.RasterXSize
src_nl = ds.RasterYSize
chipdata = dict()
#pixel indices in source image
x0 = max([0, px_x[0]])
y0 = max([0, px_y[0]])
x1 = min([src_ns, px_x[1]])
y1 = min([src_nl, px_y[1]])
win_xsize = x1-x0+1
win_ysize = y1-y0+1
#pixel indices in image chip (ideally 0 and ns-1 or nl-1)
i0 = x0 - px_x[0]
i1 = i0 + win_xsize
j0 = y0 - px_y[0]
j1 = j0+ win_ysize
templateImg = np.zeros((nl,ns))
if self.nodata:
templateImg *= self.nodata
templateImg = templateImg.astype(self.getdtype())
templateMsk = np.ones((nl,ns), dtype='bool')
if win_xsize < 1 or win_ysize < 1:
six.print_('Selected image chip is out of raster image {}'.format(self.pathImg), file=sys.stderr)
for i, b in enumerate(bands):
chipdata[b] = np.copy(templateImg)
else:
for i, b in enumerate(bands):
band = ds.GetRasterBand(b)
data = np.copy(templateImg)
data[j0:j1,i0:i1] = band.ReadAsArray(xoff=x0, yoff=y0, win_xsize=win_xsize,win_ysize=win_ysize)
chipdata[b] = data
nodatavalue = band.GetNoDataValue()
if nodatavalue is not None:
templateMsk[j0:j1,i0:i1] = np.logical_and(templateMsk[j0:j1,i0:i1], data[j0:j1,i0:i1] != nodatavalue)
if self.pathMsk:
ds = gdal.Open(self.pathMsk)
tmp = ds.GetRasterBand(1).ReadAsArray(xoff=x0, yoff=y0, \
win_xsize=win_xsize,win_ysize=win_ysize) == 0
templateMsk[j0:j1,i0:i1] = np.logical_and(templateMsk[j0:j1,i0:i1], tmp)
chipdata['mask'] = templateMsk
return chipdata
def __repr__(self):
return 'TS Datum {} {}'.format(self.date, str(self.sensor))
def __cmp__(self, other):
return cmp(str((self.date, self.sensor)), str((other.date, other.sensor)))
#def __eq__(self, other):
# return self.date == other.date and self.sensor == other.sensor
def __lt__(self, other):
if self.date < other.date:
return True
else:
return self.sensor.sensorName < other.sensor.sensorName
def __hash__(self):
return hash((self.date,self.sensor.sensorName))
sigTimeSeriesDatesAdded = pyqtSignal(list)
sigTimeSeriesDatesRemoved = pyqtSignal(list)
sigSensorAdded = pyqtSignal(SensorInstrument)
sigSensorRemoved = pyqtSignal(SensorInstrument)
sigProgress = pyqtSignal(int, int, int, name='progress')
sigClosed = pyqtSignal()
sigError = pyqtSignal(object)
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
def __init__(self, imageFiles=None, maskFiles=None):
QObject.__init__(self)
#define signals
#fire when a new TSD is added
#self.data = collections.OrderedDict()
self.data = list()
self.CHIP_BUFFER=dict()
self.shape = None
self.Sensors = collections.OrderedDict()
self.Pool = None
if imageFiles is not None:
self.addFiles(imageFiles)
if maskFiles is not None:
self.addMasks(maskFiles)
_sep = ';'
images = []
masks = []
with open(path, 'r') as f:
lines = f.readlines()
for l in lines:
if re.match('^[ ]*[;#&]', l):
continue
parts = re.split('[\n'+TimeSeries._sep+']', l)
parts = [p for p in parts if p != '']
images.append(parts[0])
if len(parts) > 1:
masks.append(parts[1])
if n_max:
n_max = min([len(images), n_max])
self.addFiles(images[0:n_max])
else:
self.addFiles(images)
#self.addMasks(masks)
def saveToFile(self, path):
if path is None or len(path) == 0:
return
lines = []
lines.append('#Time series definition file: {}'.format(np.datetime64('now').astype(str)))
lines.append('#<image path>[;<mask path>]')
for TSD in self.data.values():
line = TSD.pathImg
if TSD.pathMsk is not None:
line += TimeSeries._sep + TSD.pathMsk
lines.append(line)
lines = [l+'\n' for l in lines]
print('Write {}'.format(path))
with open(path, 'w') as f:
f.writelines(lines)
def getMaxSpatialExtent(self, crs=None):
if len(self.data) == 0:
return None
extent = self.data[0].spatialExtent()
if len(self.data) > 1:
for TSD in self.data[1:]:
extent.combineExtentWith(TSD.spatialExtent())
def getObservationDates(self):
return [tsd.getDate() for tsd in self.data]
def getTSDs(self, date_of_interest=None):
if date_of_interest:
tsds = [tsd for tsd in self.data if tsd.getDate() == date_of_interest]
else:
tsds = self.data
return tsds
def _callback_error(self, error):
six.print_(error, file=sys.stderr)
self._callback_progress()
def _callback_spatialchips(self, results):
self.chipLoaded.emit(results)
self._callback_progress()
def _callback_progress(self):
self._callback_progress_done += 1
self.sigProgress.emit(0, self._callback_progress_done, self._callback_progress_max)
if self._callback_progress_done >= self._callback_progress_max:
self._callback_progress_done = 0
self._callback_progress_max = 0
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def getSpatialChips_parallel(self, bbWkt, srsWkt, TSD_band_list, ncpu=1):
assert type(bbWkt) is str and type(srsWkt) is str
import multiprocessing
if self.Pool is not None:
self.Pool.terminate()
self.Pool = multiprocessing.Pool(processes=ncpu)
self._callback_progress_max = len(TSD_band_list)
self._callback_progress_done = 0
for T in TSD_band_list:
TSD = copy.deepcopy(T[0])
bands = T[1]
#TSD = pickle.dumps(self.data[date])
args = (TSD, bbWkt, srsWkt)
kwds = {'bands':bands}
if six.PY3:
self.Pool.apply_async(PFunc_TimeSeries_getSpatialChip, \
args=args, kwds=kwds, \
callback=self._callback_spatialchips, error_callback=self._callback_error)
else:
self.Pool.apply_async(PFunc_TimeSeries_getSpatialChip, \
args, kwds, self._callback_spatialchips)
s = ""
pass
def getImageChips(self, xy, size=50, bands=[4,5,6], dates=None):
chipCollection = collections.OrderedDict()
if dates is None:
dates = self.data.keys()
for date in dates:
TSD = self.data[date]
chipCollection[date] = TSD.readImageChip(xy, size=size, bands=bands)
return chipCollection
def addMasks(self, files, raise_errors=True, mask_value=0, exclude_mask_value=True):
assert isinstance(files, list)
l = len(files)
for i, file in enumerate(files):
try:
self.addMask(file, raise_errors=raise_errors, mask_value=mask_value, exclude_mask_value=exclude_mask_value, _quiet=True)
except:
pass
self.sigProgress.emit(0, 0, 1)
self.sigChanged.emit()
def addMask(self, pathMsk, raise_errors=True, mask_value=0, exclude_mask_value=True, _quiet=False):
print('Add mask {}...'.format(pathMsk))
ds = getDS(pathMsk)
date = getImageDate(ds)
if date in self.data.keys():
TSD = self.data[date]
if not _quiet:
return TSD.setMask(pathMsk, raise_errors=raise_errors, mask_value=mask_value, exclude_mask_value=exclude_mask_value)
else:
info = 'TimeSeries does not contain date {} {}'.format(date, pathMsk)
if raise_errors:
raise Exception(info)
else:
six.print_(info, file=sys.stderr)
return False
def clear(self):
self.Sensors.clear()
dates = self.data[:]
self.sigTimeSeriesDatesRemoved.emit(dates)
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
assert type(TSD) is TimeSeriesDatum
S = TSD.sensor
self.Sensors[S].remove(TSD)
if len(self.Sensors[S]) == 0:
self.Sensors.pop(S)
self.sigSensorRemoved(S)
removed.append(self.data.pop(TSD, None))
self.sigTimeSeriesDatesRemoved.emit(removed)
def addTimeSeriesDates(self, timeSeriesDates):
assert isinstance(timeSeriesDates, list)
added = list()
for TSD in timeSeriesDates:
try:
sensorAdded = False
existingSensors = list(self.Sensors.keys())
if TSD.sensor not in existingSensors:
self.Sensors[TSD.sensor] = list()
sensorAdded = True
else:
TSD.sensor = existingSensors[existingSensors.index(TSD.sensor)]
if TSD in self.data:
six.print_('Time series datum already added: {}'.format(str(TSD)), file=sys.stderr)
else:
self.Sensors[TSD.sensor].append(TSD)
#insert sorted
bisect.insort(self.data, TSD)
added.append(TSD)
if sensorAdded:
self.sigSensorAdded.emit(TSD.sensor)
except:
exc_type, exc_value, exc_traceback = sys.exc_info()
traceback.print_exception(exc_type, exc_value, exc_traceback, limit=2)
six.print_('Unable to add {}'.format(file), file=sys.stderr)
pass
if len(added) > 0:
self.sigTimeSeriesDatesAdded.emit(added)
def addFilesAsync(self, files):
assert isinstance(files, list)
def findAbsolutePath(self,file):
if os.path.exists(file): return file
possibleRoots = [DIR_EXAMPLES, DIR_REPO, os.getcwd()]
for root in possibleRoots:
tmp = jp(root, file)
if os.path.exists(tmp):
return tmp
return None
def addFiles(self, files):
assert isinstance(files, list)
l = len(files)
assert l > 0
tmp = self.findAbsolutePath(file)
if tmp:
toadd.append(TimeSeriesDatum(tmp))
six.print_('Add image {}...'.format(tmp))
else:
dprint('Unable to locate: {}'.format(file), file=sys.stderr)
self.addTimeSeriesDates(toadd)
def __len__(self):
return len(self.data)
def __iter__(self):
return iter(self.data)
def __getitem__(self, key):
return self.data[key]
def __contains__(self, item):
return item in self.data
def __repr__(self):
info = []
info.append('TimeSeries:')
l = len(self)
info.append(' Scenes: {}'.format(l))
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
return '\n'.join(info)
regAcqDate = re.compile(r'acquisition[ ]*(time|date|day)', re.I)
regLandsatSceneID = re.compile(r"L[EMCT][1234578]{1}[12]\d{12}[a-zA-Z]{3}\d{2}")
def getImageDate2(lyr):
assert isinstance(lyr, QgsRasterLayer)
mdLines = str(lyr.metadata()).splitlines()
date = None
#find date in metadata
for line in [l for l in mdLines if regAcqDate.search(l)]:
date = parseAcquisitionDate(line)
if date:
return date
#find date in filename
dn, fn = os.path.split(str(lyr.dataProvider().dataSourceUri()))
date = parseAcquisitionDate(fn)
if date: return date
#find date in file directory path
date = parseAcquisitionDate(date)
return date
def PFunc_TimeSeries_getSpatialChip(TSD, bbWkt, srsWkt , bands=[4,5,3]):
chipdata = TSD.readSpatialChip(bbWkt, srs=srsWkt, bands=bands)
return TSD, chipdata
def px2Coordinate(gt, pxX, pxY, upper_left=True):
cx = gt[0] + pxX*gt[1] + pxY*gt[2]
cy = gt[3] + pxX*gt[4] + pxY*gt[5]
if not upper_left:
cx += gt[1]*0.5
cy += gt[5]*0.5
return cx, cy
def coordinate2px(gt, cx, cy):
px = int((cx - gt[0]) / gt[1])
py = int((cy - gt[3]) / gt[5])
return px, py
regYYYYDOY = re.compile(r'(19|20)\d{5}')
regYYYYMMDD = re.compile(r'(19|20)\d{2}-\d{2}-\d{2}')
regYYYY = re.compile(r'(19|20)\d{2}')
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
def parseWavelength(lyr):
wl = None
wlu = None
assert isinstance(lyr, QgsRasterLayer)
md = [l.split('=') for l in str(lyr.metadata()).splitlines() if 'wavelength' in l.lower()]
#see http://www.harrisgeospatial.com/docs/ENVIHeaderFiles.html for supported wavelength units
regWLU = re.compile('((micro|nano|centi)meters)|(um|nm|mm|cm|m|GHz|MHz)')
for kv in md:
key, value = kv
key = key.lower()
if key == 'center wavelength':
tmp = re.findall('\d*\.\d+|\d+', value) #find floats
if len(tmp) == 0:
tmp = re.findall('\d+', value) #find integers
if len(tmp) == lyr.bandCount():
wl = [float(w) for w in tmp]
if key == 'wavelength units':
match = regWLU.search(value)
if match:
wlu = match.group()
names = ['nanometers','micrometers','millimeters','centimeters','decimenters']
si = ['nm','um','mm','cm','dm']
if wlu in names:
wlu = si[names.index(wlu)]
return wl, wlu
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
def parseAcquisitionDate(text):
match = regLandsatSceneID.search(text)
if match:
id = match.group()
return getDateTime64FromYYYYDOY(id[9:16])
match = regYYYYMMDD.search(text)
if match:
return np.datetime64(match.group())
match = regYYYYDOY.search(text)
if match:
return getDateTime64FromYYYYDOY(match.group())
match = regYYYY.search(text)
if match:
return np.datetime64(match.group())
return None
def getDateTime64FromYYYYDOY(yyyydoy):
return getDateTime64FromDOY(yyyydoy[0:4], yyyydoy[4:7])
def getDateTime64FromDOY(year, doy):
if type(year) is str:
year = int(year)
if type(doy) is str:
doy = int(doy)
return np.datetime64('{:04d}-01-01'.format(year)) + np.timedelta64(doy-1, 'D')
if __name__ == '__main__':
print convertMetricUnit(100, 'cm', 'm')
print convertMetricUnit(1, 'm', 'um')