Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Seminar Problemorientierte Programmierung\n",
"\n",
"## Exkurs: Was mir an Python gefällt\n",
"\n",
"In dieser Rubrik, die immer am Anfang eines Kapitels steht, möchte ich Ihnen zeigen, wofür ich Python nutze und warum ich es mag. Sie werden vielleicht noch nicht verstehen, was ich genau mache, aber Sie sehen damit schon einmal die Möglichkeiten von Python und können später darauf zurückgreifen. Da dies auch ein Exkurs ist, können Sie diese Rubrik gerne auch erst einmal überspringen.\n",
"\n",
"Mit den Operatoren aus diesem Kapitel können wir ganz leicht das Verfahren zur Umwandlung einer Dezimalzahl in ihre Binärdarstellung implementieren:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pass"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6 Ertragreiche Funktionen\n",
"\n",
"Viele Python-Funktionen die wir bis jetzt genutzt haben, wie z.B. die Mathematik-Funktionen aus dem `math`-Modul, erzeugen Rückgabewerte (*return values*). Aber die meisten Funktionen die wir bisher selber geschrieben haben sind \"leer\": sie bewirken etwas, beispielsweise die Ausgabe eines Wertes (mit Hilfe der `print`-Funktion) oder die Bewegung einer Schildkröte, aber sie haben keinen Rückgabewert. In diesem Kapitel werden wir lernen, wie wir \"ertragreiche Funktionen\", also solche mit Rückgabewert, schreiben können.\n",
"\n",
"\n",
"\n",
"([Random Number](https://xkcd.com/221/), Randall Munroe)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.1 Rückgabewerte\n",
"\n",
"Der Aufruf einer Funktion erzeugt einen Rückgabewert, den wir üblicherweise einer Variable zuweisen oder als Teil eines Ausdrucks verwenden:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"e = math.exp(1.0)\n",
"height = radius * math.sin(radians)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Die (meisten) Funktionen, die wir bisher geschrieben haben sind \"leer\" - sie haben keinen Rückgabewert. Präziser ausgedrückt ist ihr Rückgabewert `None` (also nichts).\n",
"\n",
"In diesem Kapitel schreiben wir (endlich) ertragreiche Funktionen. Das erste Beispiel ist die Funktion `area`, die die Fläche eines Kreises für einen gegebenen Radius berechnet:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def area(radius):\n",
" a = math.pi * radius**2\n",
" return a"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wir haben die `return`-Anweisung vorher schon einmal gesehen, aber in ertragreichen Funktionen folgt hinter der `return`-Anweisung ein Ausdruck (im Beispiel oben `a`). Die Anweisung bedeutet: \"Beende sofort diese Funktion und verwende den folgenden Ausdruck als Rückgabewert.\" Der Ausdruck kann beliebig kompliziert sein, wir könnten diese Funktion also auch kürzer schreiben: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def area(radius):\n",
" return math.pi * radius**2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Auf der anderen Seite können uns **temporäre Variablen** wie `a` beim Debugging helfen.\n",
"\n",
"Manchmal ist es nützlich, mehrere `return`-Anweisungen zu haben - eine in jedem Zweig einer Verzweigung:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def betrag(x):\n",
" if x < 0:\n",
" return -x\n",
" else:\n",
" return x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Da solche `return`-Anweisungen in alternativen (sich gegenseitig ausschließenden) Zweigen liegen, wird nur eine davon ausgeführt.\n",
"\n",
"Sobald eine `return`-Anweisung ausgeführt wird, wird die Funktion beendet, ohne die folgenden Anweisungen auszuführen. Code der nach einer `return`-Anweisung folgt oder an einer anderen Stelle, die während der Ausführung niemals erreicht werden kann, wird **toter Code** (*dead code*) genannt.\n",
"\n",
"<center>\n",
"{☠} \n",
"<br/>\n",
"dead code\n",
"</center>\n",
"\n",
"In einer eintragreichen Funktion sollten wir sicherstellen, dass jeder mögliche Pfad durch den Code eine `return`-Anweisung erreicht. Zum Beispiel:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def betrag(x):\n",
" if x < 0:\n",
" return -x\n",
" if x > 0:\n",
" return x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Diese Funktion ist falsch, denn wenn `x` gleich 0 ist, ist keine der beiden Bedingungen erfüllt und die Funktion wird beendet, ohne dass eine `return`-Anweisung erreicht wird. Wenn die Ausführung das Ende einer Funktion erreicht, ist der Rückgabewert `None`, was nicht der Betrag von 0 ist:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(betrag(0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Übrigens, Python bietet eine eingebaute Funktion `abs` die den Betrag einer Zahl berechnet:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(abs(-42))\n",
"print(abs(0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Schreiben Sie eine Funktion `compare`, die zwei Parameter erwartet, `x` und `y`, und `1` zurückliefert, wenn `x > y` ist, `0` wenn `x == y` gilt und `-1` für `x < <`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Implementieren Sie hier die Funktion compare"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 6.2 Schrittweise Entwicklung\n",
"\n",
"Wenn Sie größere Funktionen schreiben kann es sein, dass Sie mehr Zeit mit der Fehlersuche (Debugging) verbringen.\n",
"\n",
"Um mit zunehmend komplexeren Programmen klarzukommen, können Sie eine verwenden, die sich **schrittweise Entwicklung** (*incremental development*) nennt. Das Ziel bei der schrittweisen Entwicklung ist die Vermeidung langer Fehlersuch-Sitzungen, indem immer nur kleine Codestücke hinzugefügt und getestet werden.\n",
"\n",
"Nehmen wir z.B. an, dass wir die Entfernung zwischen zwei Punkten berechnen wollen, die durch die Koordinaten $(x_1, y_1)$ und $(x_2, x_2)$ gegeben sind. Nach dem [Satz des Pythagoras](https://de.wikipedia.org/wiki/Satz_des_Pythagoras) ist die Entfernung: \n",
"\n",
"$entfernung = \\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$\n",
"\n",
"Im ersten Schritt sollten wir uns überlegen, wie die Funktion `entfernung` in Python aussehen sollte. In anderen Worten: was sind die Eingaben (Parameter) und was ist das Ergebnis (Rückgabewert)?\n",
"\n",
"In diesem Fall sind die Eingaben zwei Punkte, die wir durch vier Zahlen repräsentieren können. Das Ergebnis ist die Entfernung, repräsentiert als Gleitkommazahl.\n",
"\n",
"Mit dieser Information können wir sofort eine Skizze der Funktion schreiben:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def entfernung(x1, y1, x2, y2):\n",
" return 0.0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ganz offensichtlich berechnet diese Variante nicht die Entfernung, sie liefert stets Null zurück. Aber sie ist syntaktisch korrekt und sie läuft, das heißt, wir können die Funktion testen, bevor wir sie verkomplizieren.\n",
"\n",
"Rufen Sie die Funktion mit Beispielargumenten auf, um sie zu testen: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"entfernung(1, 2, 4, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Diese Werte sind so gewählt, dass die horizontale Distanz drei ist und die vertikale Distanz 4 - dadurch ist das Ergebnis 5 - die Hypothenuse eines Dreiecks mit den Seitenlängen 3-4-5. Wenn wir die Funktion testen ist es hilfreich, das richtige Ergebnis zu kennen.\n",
"\n",
" \n",
"\n",
"([Petrus3743](https://commons.wikimedia.org/wiki/File:01-Rechtwinkliges_Dreieck-Pythagoras.svg), Wikimedia Commons)\n",
"\n",
"An dieser Stelle haben wir uns davon überzeugt, dass die Funktion syntaktisch korrekt ist und wir können damit beginnen, Code zum Rumpf hinzuzufügen. Ein naheliegender nächster Schritt ist die Differenzen $x_2-x_1$ und $y_2-y_1$ zu berechnen. Die nächste Version speichert die Werte in temporären Variablen und gibt sie aus: "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def entfernung(x1, y1, x2, y2):\n",
" dx = x2 - x1\n",
" dy = y2 - y1\n",
" print('dx ist', dx)\n",
" print('dy ist', dy)\n",
" return 0.0\n",
"\n",
"entfernung(1, 2, 4, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wenn die Funktion richtig funktioniert, sollte `dx ist 3` und `dx ist 4` ausgegeben werden. Wenn dem so ist wissen wir, dass die Funktion die Argumente richtig erhalten hat und die erste Berechnung korrekt durchgeführt wurde. Falls nicht, gibt es nur wenige Zeilen, die wir überprüfen müssen.\n",
"\n",
"Als nächstes berechnen wir die Summe der Quadrate von `dx` und `dy`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def entfernung(x1, y1, x2, y2):\n",
" dx = x2 - x1\n",
" dy = y2 - y1\n",
" dquadrat = dx**2 + dy**2\n",
" print('dquadrat ist: ', dquadrat)\n",
" return 0.0\n",
"\n",
"entfernung(1, 2, 4, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wieder rufen wir die Funktion mit bekannten Werten auf und prüfen das Ergebnis (das 25 sein sollte). Schließlich können wir die Funktion `math.sqrt` nutzen um das Ergebnis zu berechnen und zurückzugeben:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"def entfernung(x1, y1, x2, y2):\n",
" dx = x2 - x1\n",
" dy = y2 - y1\n",
" dquadrat = dx**2 + dy**2\n",
" ergebnis = math.sqrt(dquadrat)\n",
" return ergebnis\n",
"\n",
"entfernung(1, 2, 4, 6)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Falls das richtig funktioniert, sind wir fertig. Ansonsten könnten wir beispielsweise den Wert von `ergebnis` vor der `return`-Anweisung mit `print` ausgeben.\n",
"\n",
"Die endgültige Version der Funktion zeigt nichts an (gibt nichts auf dem Bildschirm aus), wenn sie ausgeführt wird; sie gibt nur einen Wert zurück. Die `print`-Anweisungen die wir zwischendurch geschrieben haben sind hilfreich für die Fehlersuche, aber sobald die Funktion funktioniert, sollten wir sie entfernen. Solcher Code wird **Hilfscode** (*scaffolding*) genannt, denn er hilft beim Schreiben des Programms aber ist nicht Teil des endgültigen Produkts.\n",
"\n",
"Wenn Sie mit Programmieren beginnen, sollten sie jeweils nur ein bis zwei Zeilen auf einmal hinzufügen. Sobald Sie mehr Erfahrung gesammelt haben werden Sie merken, dass Sie größere Stücke Code auf einmal schreiben und testen. In jedem Fall kann Ihnen schrittweise Entwicklung viel Zeit bei der Fehlersuche ersparen.\n",
"\n",
"Die wichtigsten Punkte dieses Vorgehens sind:\n",
"1. Beginnen Sie mit einem funktionierenden Programm und führen Sie nur kleine, inkrementelle Änderungen durch. Sollte ein Fehler auftreten, so sollten Sie zu jedem Zeitpunkt eine gute Idee davon haben, wodurch er hervorgerufen wird.\n",
"2. Nutzen Sie Variablen, um Zwischenwerte zu speichern, so dass Sie diese ausgeben (`print`) und überprüfen können.\n",
"3. Sobald das Programm funktioniert sollten Sie Teile des Hilfscodes entfernen oder mehrere Anweisungen zu einer Verbundanweisung zusammenfügen, aber nur, wenn sich dadurch die Lesbarkeit des Programms nicht verschlechtert.\n",
"\n",
"**Übung:** Nutzen Sie das Prinzip der schrittweisen Entwicklung, um eine Funktion `hypothenuse` zu schreiben, die die Länge der Hypothenuse eines rechtwinkligen Dreiecks zurückgibt, wenn die Längen der beiden Katheden gegeben sind. Dokumentieren Sie jeden Entwicklungsschritt hier im Notebook (d.h., erzeugen Sie eine Kopie der Funktion, bevor Sie den nächsten Entwicklungsschritt durchführen)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# beginnen Sie hier mit der Entwicklung der Funktion"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" Speichern Sie dieses Notebook, so dass Ihre Änderungen nicht verlorengehen (nicht auf einem Pool-Rechner). Klicken Sie dazu oben links auf das Disketten-Icon und nutzen Sie beispielsweise einen USB-Stick, E-Mail, Google Drive, Dropbox oder Ihre [HU-Box](https://box.hu-berlin.de/). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Herzlichen Glückwunsch! Sie haben das 5. Kapitel geschafft. Weiter geht es in [6: Ergebnisreiche Funktionen](seminar06.ipynb)."
]
}
],
"metadata": {
"language_info": {
"name": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}