Skip to content
Snippets Groups Projects
Commit bddd71c1 authored by Prof. Dr. Robert Jäschke's avatar Prof. Dr. Robert Jäschke
Browse files

kleine Aufräumarbeiten

parent 3034afee
No related branches found
No related tags found
No related merge requests found
......@@ -23,35 +23,35 @@ contributing!*
So far, notebooks are listed by difficulty, indicated by stars (☆ = simple, ☆☆ = advanced, ☆☆☆ = sophisticated), then alphabetically:
- [[file:classification.ipynb][Classification]] :: basic machine learning classification example (☆)
- [[file:classification.ipynb][Classification]] :: basic machine learning classification example (☆)
- [[file:exponential_smoothing.ipynb][Exponential smoothing]] :: using [[https://ipywidgets.readthedocs.io/en/latest/examples/Widget%2520Basics.html][Jupyter's interactive widget]] to
explore [[https://en.wikipedia.org/wiki/Exponential_smoothing][exponential smoothing]] (☆)
explore [[https://en.wikipedia.org/wiki/Exponential_smoothing][exponential smoothing]] (☆)
- [[file:Hamming.ipynb][Hamming]] :: a graph visualising a strange type of word similarity (☆)
- [[file:Jupyter-Demo.ipynb][Jupyter-Demo]] :: demo of some Jupyter features useful for creating
learning material (☆)
learning material (☆)
- [[file:Twitter.ipynb][Twitter]] :: analysing Twitter data (raw JSON from Twitter's API) (☆)
- [[file:wikipedia_language_editions.ipynb][Wikipedia language editions]] :: plotting the depth and number of articles of different
Wikipedia language editions (☆)
- [[file:wikipedia_language_editions.ipynb][Wikipedia language editions]] :: plotting the depth and number of
articles of different Wikipedia language editions (☆)
- [[file:AirBnB_Use_Berlin.ipynb][AirBnB Use in Berlin]] :: exemplary (and excellent) term paper for the
module "Datenanalyse & -auswertung" (☆☆)
module "Datenanalyse & -auswertung" (☆☆)
- [[file:amazon_reviews.ipynb][Amazon reviews]] :: crawling web sites with [[https://scrapy.org/][Scrapy]], processing JSON
data, basic statistics and visualisation (☆☆)
- [[file:Art.ipynb][Art]] :: Creating computer-generated art by translation, scaling and composition of
functions (☆☆)
data, basic statistics and visualisation (☆☆)
- [[file:Art.ipynb][Art]] :: Creating computer-generated art by translation, scaling and
composition of functions (☆☆)
- [[file:community_detection.ipynb][Community detection]] :: applying community detection algorithms to
network graphs (☆☆)
network graphs (☆☆)
- [[file:crawling_a_blog.ipynb][Crawling a blog]] :: crawling web sites, basic text mining, basic
statistics and visualisation (☆☆)
statistics and visualisation (☆☆)
- [[file:Dracor.ipynb][DraCor]] :: retrieving data from a REST API, text transformation and
classification (☆☆)
classification (☆☆)
- [[file:machine_learning.ipynb][Machine Learning]] :: recipes for common machine learning tasks (☆☆)
- [[file:Mondrian.ipynb][Mondrian]] :: turtle graphics, recursion, art (☆☆)
- [[file:statistics_top50faculty.ipynb][Statistics top 50 faculty]] :: exploratory statistical analysis of the
[[http://cs.brown.edu/people/apapouts/faculty_dataset.html][dataset of 2200 faculty in 50 top US computer science graduate
programs]] (☆☆)
[[http://cs.brown.edu/people/apapouts/faculty_dataset.html][dataset of 2200 faculty in 50 top US computer science graduate
programs]] (☆☆)
- [[file:distances.ipynb][Distances]] :: comprehensive interactive simulation of recovering
information from noisy data (namely, point positions given their
noisy distance matrix) (☆☆☆)
information from noisy data (namely, point positions given their
noisy distance matrix) (☆☆☆)
- [[file:Das_Haus_vom_Nikolaus.ipynb][Das Haus vom Nikolaus]] :: graph [[https://en.wikipedia.org/wiki/Graph_traversal][traversal]] and drawing (☆☆☆)
- [[file:scrape_review_blog.ipynb][Scrape review blog]] :: Here, we use the python package scrapy to download all reviews of a literature blog (☆☆☆)
- [[file:scrape_review_blog.ipynb][Scrape review blog]] :: Here, we use the python package scrapy to
download all reviews of a literature blog (☆☆☆)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment