Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
IndiQuo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Schlüsselstellen
IndiQuo
Commits
130b3597
Commit
130b3597
authored
1 year ago
by
Frederik Arnold
Browse files
Options
Downloads
Patches
Plain Diff
Add similarity training for drama summary
parent
35a2b31c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
indiquo/training/similarity/TrainSimilarityDrama.py
+72
-0
72 additions, 0 deletions
indiquo/training/similarity/TrainSimilarityDrama.py
with
72 additions
and
0 deletions
indiquo/training/similarity/TrainSimilarityDrama.py
0 → 100644
+
72
−
0
View file @
130b3597
from
argparse
import
ArgumentParser
from
os.path
import
join
from
sentence_transformers
import
SentenceTransformer
,
InputExample
,
losses
,
evaluation
from
torch.utils.data
import
DataLoader
import
csv
from
datetime
import
datetime
def
main
():
argument_parser
=
ArgumentParser
()
argument_parser
.
add_argument
(
'
input_path
'
,
nargs
=
1
,
metavar
=
'
input-path
'
,
help
=
"
Path to the input folder
"
)
argument_parser
.
add_argument
(
'
output_path
'
,
nargs
=
1
,
metavar
=
'
output-path
'
,
help
=
"
Path to the input folder
"
)
argument_parser
.
add_argument
(
'
model
'
,
nargs
=
1
,
metavar
=
'
model
'
,
help
=
""
)
args
=
argument_parser
.
parse_args
()
input_path
=
args
.
input_path
[
0
]
output_path
=
args
.
output_path
[
0
]
model_name
=
args
.
model
[
0
]
model_name_repl
=
model_name
.
replace
(
'
/
'
,
''
)
now
=
datetime
.
now
()
date_time_string
=
now
.
strftime
(
'
%Y_%m_%d_%H_%M_%S
'
)
date_time_string
+=
f
'
_
{
model_name_repl
}
'
output_path
=
join
(
output_path
,
date_time_string
)
train_examples
=
[]
with
open
(
join
(
input_path
,
'
train_set.tsv
'
),
'
r
'
)
as
train_file
:
reader
=
csv
.
reader
(
train_file
,
delimiter
=
'
\t
'
)
# skip first row (header)
# next(reader, None)
for
row
in
reader
:
ie
=
InputExample
(
texts
=
[
row
[
0
],
row
[
1
]])
train_examples
.
append
(
ie
)
# val_anchor = []
# val_positive = []
# val_negative = []
# with open(join(input_path, 'val_set.tsv'), 'r') as train_file:
# reader = csv.reader(train_file, delimiter='\t')
#
# # skip first row (header)
# # next(reader, None)
#
# for row in reader:
# val_anchor.append(row[0])
# val_positive.append(row[1])
# val_negative.append(row[2])
# model = SentenceTransformer('deutsche-telekom/gbert-large-paraphrase-cosine')
model
=
SentenceTransformer
(
model_name
)
train_dataloader
=
DataLoader
(
train_examples
,
shuffle
=
True
,
batch_size
=
8
)
train_loss
=
losses
.
MultipleNegativesRankingLoss
(
model
=
model
)
# evaluator = evaluation.TripletEvaluator(val_anchor, val_positive, val_negative)
# Tune the model
model
.
fit
(
train_objectives
=
[(
train_dataloader
,
train_loss
)],
epochs
=
3
,
warmup_steps
=
100
,
evaluation_steps
=
10000
,
output_path
=
output_path
)
if
__name__
==
'
__main__
'
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment