Newer
Older
from sim.Match import Match
from sim.MatchSegment import MatchSegment
from sim.Text import Text
import re
from sim.Token import Token
from rapidfuzz import fuzz, process
from datasketch import MinHash, MinHashLSH
mts_tags = {}
forward_references = {}
lsh = MinHashLSH(threshold=0.80, num_perm=128)
for i in range(0, len(texts)):
(mts_tags, forward_references, lsh) = self.__make_forward_references(i, texts[i], tokens,
mts_tags,
forward_references, lsh)
similarities = self.__get_similarities(tokens, texts, 0, 1, forward_references)
return similarities
# self.print_similarities(similarities, input_texts)
texts = []
tokens = []
for input_text in input_texts:
nr_of_characters = len(input_text)
nr_of_words = len(input_text.split())
file_name = 'dummy'
tk_start_pos = len(tokens)
tokens.extend(self.tokenize_text(input_text))
tk_end_pos = len(tokens)
text = Text('Text', nr_of_characters, nr_of_words, file_name, tk_start_pos, tk_end_pos)
texts.append(text)
return texts, tokens
def tokenize_text(self, input_text):
cleaned_text = self.clean_text(input_text)
tokens = []
for match in re.finditer("[^\\s]+", cleaned_text):
if len(token) > 0:
text_begin_pos = match.start()
text_end_pos = match.end()
tokens.append(Token(token, text_begin_pos, text_end_pos))
return tokens
def clean_text(self, input_text):
# TODO: optional machen
input_text = re.sub("[.?!,;:/()'+\\-\\[\\]‚‘…]", " ", input_text)
input_text = re.sub("[0-9]", " ", input_text)
return input_text.lower()
# TODO: optional machen
input_word = input_word.replace('ß', 'ss')
input_word = input_word.replace('ä', 'ae')
input_word = input_word.replace('ö', 'oe')
input_word = input_word.replace('ü', 'ue')
def __make_forward_references(self, text_index, text, tokens, mts_tags, forward_references, lsh):
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
text_begin_pos = text.tk_start_pos
text_end_pos = text.tk_end_pos
for i in range(text_begin_pos, text_end_pos - self.min_match_length):
tag = ''
for token in tokens[i: i + self.min_match_length]:
tag = tag + token.text
# TODO: geht das fuzzy??
# if tag in mts_tags:
# forward_references[mts_tags[tag]] = i
# mts_tags[tag] = i
# if text_index == 0:
# existing_tags.append(tag)
# else:
# best_existing_tag = process.extractOne(tag, existing_tags, scorer=fuzz.ratio, score_cutoff=80)
#
# if best_existing_tag:
# forward_references[mts_tags[best_existing_tag[0]]] = i
if text_index == 0:
my_set = set(tag)
min_hash = MinHash(num_perm=128)
for d in my_set:
min_hash.update(d.encode('utf8'))
lsh.insert(tag, min_hash, False)
else:
my_set = set(tag)
min_hash = MinHash(num_perm=128)
for d in my_set:
min_hash.update(d.encode('utf8'))
result = lsh.query(min_hash)
if result and len(result) > 0:
if closest_match:
forward_references[mts_tags[closest_match]] = i
mts_tags[tag] = i
def __get_similarities(self, tokens, texts, source_text_index, target_text_index, forward_references):
source_token_start_pos = texts[source_text_index].tk_start_pos
source_token_end_pos = texts[source_text_index].tk_end_pos
similarities = []
while source_token_start_pos + self.min_match_length <= source_token_end_pos:
best_match = self.__get_best_match(tokens, texts, source_text_index, target_text_index,
source_character_start_pos = tokens[best_match.source_token_start_pos].start_pos
source_character_end_pos = tokens[best_match.source_token_start_pos + best_match.source_length - 1].end_pos
target_character_start_pos = tokens[best_match.target_token_start_pos].start_pos
target_character_end_pos = tokens[best_match.target_token_start_pos + best_match.target_length - 1].end_pos
similarities.append((MatchSegment(best_match.source_text_index, best_match.source_token_start_pos,
MatchSegment(best_match.target_text_index, best_match.target_token_start_pos,
source_token_start_pos = source_token_start_pos + best_match.source_length
else:
source_token_start_pos = source_token_start_pos + 1
return similarities
def __get_best_match(self, tokens, texts, source_text_index, target_text_index, source_token_start_pos,
forward_references):
best_match_length = 0
token_pos = source_token_start_pos
best_match = None
while 0 < token_pos < len(tokens):
if token_pos < texts[target_text_index].tk_start_pos:
if token_pos in forward_references:
token_pos = forward_references[token_pos]
else:
token_pos = -1
continue
min_match_length = self.min_match_length
if best_match_length > 0:
min_match_length = best_match_length + 1
source_token_pos = source_token_start_pos + min_match_length - 1
target_token_pos = token_pos + min_match_length - 1
if source_token_pos < texts[source_text_index].tk_end_pos and texts[
target_text_index].tk_end_pos > target_token_pos >= source_token_pos + min_match_length:
cnt = min_match_length
while cnt > 0:
if self.__fuzzy_match(tokens[source_token_pos].text, tokens[target_token_pos].text) > 80:
source_token_pos = source_token_pos - 1
target_token_pos = target_token_pos - 1
cnt = cnt - 1
else:
found = False
for i in range(1, self.max_gap + 1):
if self.__fuzzy_match(tokens[source_token_pos - i].text, tokens[target_token_pos].text) > 80:
source_token_pos = source_token_pos - 1 - i
target_token_pos = target_token_pos - 1
cnt = cnt - 1
found = True
break
if not found:
break
if cnt > 0:
if token_pos in forward_references:
token_pos = forward_references[token_pos]
else:
token_pos = -1
continue
else:
if token_pos in forward_references:
token_pos = forward_references[token_pos]
else:
token_pos = -1
continue
new_match_length = min_match_length
source_token_pos = source_token_start_pos + min_match_length
target_token_pos = token_pos + min_match_length
while source_token_pos < texts[source_text_index].tk_end_pos and texts[
target_text_index].tk_end_pos > target_token_pos > source_token_pos + new_match_length:
if self.__fuzzy_match(tokens[source_token_pos].text, tokens[target_token_pos].text) > 80:
source_token_pos = source_token_pos + 1
target_token_pos = target_token_pos + 1
new_match_length = new_match_length + 1
elif not has_skipped:
found = False
for i in range(1, 4):
if self.__fuzzy_match(tokens[source_token_pos + i].text, tokens[target_token_pos].text) > 80:
source_token_pos = source_token_pos + 1 + i
target_token_pos = target_token_pos + 1
new_match_length = new_match_length + 1 + i
offset = offset + i
found = True
has_skipped = True
break
if not found:
break
else:
break
if new_match_length >= self.min_match_length and new_match_length > best_match_length:
best_match_length = new_match_length
best_match_token_pos = token_pos
best_match = Match(source_text_index, source_token_start_pos, target_text_index, best_match_token_pos,
if token_pos in forward_references:
token_pos = forward_references[token_pos]
else:
token_pos = -1
return best_match
ratio = fuzz.ratio(input1, input2)
return ratio
if not candidates or len(candidates) == 0:
return None
# if len(candidates) == 1:
# return candidates[0]
if word in candidates:
return word
best_existing_tag = process.extractOne(word, candidates, scorer=fuzz.ratio, score_cutoff=80)
if best_existing_tag:
return best_existing_tag[0]
return None
for similarity_tuple in similarities:
similarity_literature = similarity_tuple[0]
similarity_scientific = similarity_tuple[1]
print('{0}, {1}'.format(similarity_literature, similarity_scientific))
print(input_texts[0][similarity_literature.character_start_pos:similarity_literature.character_end_pos])